Hosted by IDTechEx
Expert insight into global developments
HomeEventsReportsAdvertiseTVCareersAbout UsSign-up or LoginIDTechExTwitterFacebookLinkedInGoogle+YoutubeRSSForward To Friend
Posted on June 02, 2016

New path forward for next-generation lithium-ion batteries

Electric Vehicle Energy Harvesting/Regeneration 20
In the quest for a radically better lithium-ion battery, a promising direction is the so-called "lithium-rich" cathode, in which the cathode contains a higher proportion of lithium than normal. While it has the potential to have far higher energy density, scientists have lacked a clear picture of the chemical processes, especially the role of oxygen.
Now researchers at the Department of Energy's (DOE) Lawrence Berkeley National Laboratory (Berkeley Lab) report a major advance in understanding how oxygen oxidation creates extra capacity in such cathodes, opening the door to batteries with far higher energy density, meaning your phone or electric vehicle will be able to run for much longer between charges.
"The specific nature of our findings shows a clear and exciting path forward to create the next-generation cathode materials with substantially higher energy density then current cathode materials," the researchers write in their study titled, "The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials," published online in Nature Chemistry.
The research was led by Gerbrand Ceder of Berkeley Lab's Materials Sciences Division. The lead authors were Dong-Hwa Seo and Jinhyuk Lee, and other co-authors were Alexander Urban, Rahul Malik, and ShinYoung Kang. Ceder also has an appointment at UC Berkeley's Department of Materials Science and Engineering, and all the co-authors are also affiliated with the Massachusetts Institute of Technology (MIT), where some of the work was done.
Autonomous Vehicles Land, Water, Air 2017-2037
In a conventional lithium-ion battery, the cathode material is a lithium transition metal oxide, with the content of the lithium and the transition metal, such as nickel or cobalt, balanced. In a lithium-rich (also called lithium-excess) cathode, there is a higher proportion of lithium than the transition metal. Because transition metals are heavy and also expensive, reducing its content is a big benefit. The battery can be significantly cheaper and lighter, which are especially important factors for vehicle applications, where the battery is often one of the heaviest components of the vehicle.
"This is a very exciting direction being pursued by battery scientists," Lee said. "It has been experimentally demonstrated many times that a lithium-excess cathode material can deliver higher energy density, about 50 percent higher than the current cathode materials in commercial lithium batteries."
A major stumbling block has been that scientists had lacked a clear understanding of the chemistry in a lithium-rich cathode—specifically the role of oxygen. Normally when a battery is charged and discharged, the transition metal in the cathode oxidizes and releases electrons; those electrons then travel between the cathode and anode and create electricity.
Solid-State and Polymer Batteries 2017-2027
"What we and others have been claiming recently is that you can take an electron off the oxygen and put it back, which is fairly radical. That's the big idea for this cathode design," Ceder said. "This paper specifically shows that it's true and more importantly, shows under which conditions that it becomes true. "
Ceder said he and other scientists have been speculating about oxygen's role in the cathode for more than 15 years. "It was highly controversial," he said. "We knew it was there. This study is a big conceptual breakthrough for us."
Source and top image: Berkeley Lab
Learn more at the next leading event on the topic: Business and Technology Insight Forum. Korea 2017 External Link on 20 - 21 Sep 2017 in Korea hosted by IDTechEx.