Published By
IDTechEx
Follow us:
follow us on twitter
subscrive to our rss feed
follow us on facebook
Email
Password
IDTechEx
Electric Vehicles: Everything will Change
Electric Vehicles Research
Daily electric vehicles news & market forecasts analysed by leading experts

The Battery500 Project

ZoomThe Battery500 Project
A century ago, more automobiles were powered by electricity than by gasoline.
 
But the need for longer travel ranges, the availability of a more affordable fuel source and a reliable power infrastructure soon turned internal combustion engines into the predominant means of motor transportation.
 
Now drivers are considering a move away from gasoline and back to electricity as an ideal source for automotive power, but big challenges remain. IBM and partners are working on solving one of the biggest barriers to widespread electric vehicle adoption: limited battery range.
An antidote to 'range anxiety'
Most people consider switching to electric vehicles to save money on gas and contribute to a healthier environment. But "range anxiety," the fear of being stranded with no power, was cited by 64 percent of consumers as a main detractor to buying an electric vehicle.
 
Electric cars today typically can travel only about 100 miles on current battery technology, called lithium-ion (LIB). LIB technology stands little chance of being light enough to travel 500 miles on a single charge and cheap enough to be practical for a typical family car. This problem is creating a significant barrier to electric vehicle adoption.
 
Recognizing this, IBM started the Battery 500 project in 2009 to develop a new type of lithium-air battery technology that is expected to improve energy density tenfold, dramatically increasing the amount of energy these batteries can generate and store. Today, IBM researchers have successfully demonstrated the fundamental chemistry of the charge-and-recharge process for lithium-air batteries.
 
ZoomThe Battery500 Project
 
5 things to know
1. IBM researchers are exploring the science of lithium-air batteries, capable of powering an electric car at least 500 miles on a single charge.
 
2. Lithium-air batteries borrow oxygen from the air as the vehicle is being driven, creating an air-breathing battery and enabling extended range from a single charge.
 
3. Electric car batteries will be lighter due to the elimination of heavy metal oxide used in electric car batteries today.
 
4. IBM researchers at the Almaden and Zurich labs are collaborating on the Battery 500 project with teams from around the world, including Argonne National Laboratory, Lawrence Livermore National Laboratory, Pacific Northwest Laboratory and Oak Ridge National Laboratory.
 
5. Improved battery performance has the potential to spur electric vehicle adoption, an increasingly important issue for national governments and civil leaders, with the goal of decreasing dependency on oil and improving environmental conditions.
 
According to New Scientist,
 
The lithium-air cell battery, is more attractive because it has theoretical energy densities more than 1000 times greater than the Li-ion type, putting it almost on a par with gasoline. Instead of using metal oxides in the positive electrode, lithium-air cells use carbon, which is lighter and reacts with oxygen from the air around it to produce an electrical current.
 
But there's a problem. Chemical instabilities limit their lifespan when recharging, making them impractical for use in cars. So researchers studied the underlying electrochemistry of these cells using a form of mass spectrometry. What they found was that oxygen is reacting not just with the carbon electrode, as it was known to, but also with the electrolytic solvent - the conducting solution that carries the lithium ions between the electrodes.
 
However, if the electrolyte reacts with the oxygen when the car is in use it will eventually be depleted. So the researchers used a Blue Gene supercomputer to run extremely detailed models of the reactions to look for alternative electrolytes. This included a form of atomistic modelling right down to the quantum mechanics of the components.
 
"We now have one which looks very promising," says physicist Winfried Wilcke at IBM's Almaden laboratories. He won't reveal what material it is but says that several research prototypes have already been demonstrated. And as part of Battery 500, an IBM-led coalition involving four US national laboratories and commercial partners, the hope is to have a full-scale prototype ready by 2013, with commercial batteries to follow by around 2020.
 
For more attend Electric Vehicles Land Sea Air USA 2012 External Link,where Phoenix International - A John Deere Company (leader in agricultural vehicles), BMW (cars etc), Mitsubishi Motors (small commercial vehicles and cars), Daimler AG (commercial and military vehicles and cars) and Toyota (leader in electric forklifts, cars, buses) will present. Uniquely, a large number of electric vehicle manufacturers not seen in conventional EV events will present including WheelTug airliner electrification on the ground, Pipistrel manned electric aircraft, University of Michigan unmanned solar aircraft, SolTrac electric farm tractors, Monterey Bay Aquarium Research Institute Autonomous Underwater Vehicles AUVs. Many manufacturers of industrial, commercial, military, e-bike, cars and other EVs will be there. At last you can meet those responsible for the majority of the hybrid and pure electric vehicle market and they all need components!! Most are prosperous growing businesses not reliant on government support that can be withdrawn at any time.
 
 
Sources: IBM, New Scientist
 
Image source: IBM
 

Learn More

Reports

Related Topics

  • Electric Vehicles *~
 
E-Motors and EV Master
 
Webinars Generic Banner
Portal

IDTechEx ReportsIDTechEx Reports

Electric Vehicle Forecasts, Trends and Opportunities 2015-2025
read more
Hydrogen and Fuel Cells 2015-2025: Forecasts, Technologies, Markets
read more
Electric Motors for Hybrid and Pure Electric Vehicles 2015-2025: Land, Water, Air
read more
Electric Motorcycles and Three Wheel Electric Vehicles 2015-2025
read more
Functional Materials for Supercapacitors / Ultracapacitors / EDLC 2015-2025
read more
Wireless Power Transmission for Consumer Electronics and Electric Vehicles 2014-2024
read more
Electrochemical Double Layer Capacitors: Supercapacitors 2014-2024
read more
Supercapacitor / Ultracapacitor Interviews, Strategies, Road Map 2014-2025
read more
Energy Harvesting/ Regeneration for Electric Vehicles Land, Water & Air 2015-2025
read more
Range Extenders for Electric Vehicles Land, Water & Air 2015-2025
read more
Electric Aircraft 2014-2024: Trends, Projects, Forecasts
read more
Future Technology for Hybrid and Pure Electric Cars 2015-2025
read more
Unmanned Aerial Vehicles: Electric UAVs 2014-2024
read more
Electric Boats, Small Submarines and Autonomous Underwater Vehicles (AUV) 2014-2024
read more
Power Electronics for Electric Vehicles 2013-2023: Forecasts, Technologies, Players
read more
Hybrid and Electric Vehicles for Military, Police & Security 2012-2022
read more
Analysis of over 140 Lithium-based Rechargeable Battery Manufacturers: Chemistry, Strategy, Success
read more
Industrial and Commercial Hybrid and Pure Electric Vehicles 2015-2025
read more
Electric Vehicles for Construction, Agriculture and Mining 2015-2025
read more
Hybrid and Electric Buses and Taxis 2013-2023: Forecasts, Opportunities, Players
read more
Two-Wheelers, Micro-EVs (Quadricycles), Mobility for Disabled 2013-2023
read more
Structural Electronics 2015-2025: Applications, Technologies, Forecasts
read more